Adaptive Primal-Dual Splitting Methods for Statistical Learning and Image Processing

نویسندگان

  • Tom Goldstein
  • Min Li
  • Xiaoming Yuan
چکیده

The alternating direction method of multipliers (ADMM) is an important tool for solving complex optimization problems, but it involves minimization sub-steps that are often difficult to solve efficiently. The Primal-Dual Hybrid Gradient (PDHG) method is a powerful alternative that often has simpler sub-steps than ADMM, thus producing lower complexity solvers. Despite the flexibility of this method, PDHG is often impractical because it requires the careful choice of multiple stepsize parameters. There is often no intuitive way to choose these parameters to maximize efficiency, or even achieve convergence. We propose self-adaptive stepsize rules that automatically tune PDHG parameters for optimal convergence. We rigorously analyze our methods, and identify convergence rates. Numerical experiments show that adaptive PDHG has strong advantages over non-adaptive methods in terms of both efficiency and simplicity for the user.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Primal Dual Optimization for Image Processing and Learning

The Primal-Dual Hybrid Gradient method is a powerful splitting scheme for largescale constrained and non-differentiable problems. We present practical adaptive variants of PDHG that converge more quicky and are easier to use than conventional splitting schemes. We also study the convergence of PDHG, and prove new results guaranteeing convergence of the method when adaptivity is used properly.

متن کامل

Local Linear Convergence Analysis of Primal–Dual Splitting Methods

In this paper, we study the local linear convergence properties of a versatile class of Primal–Dual splitting methods for minimizing composite non-smooth convex optimization problems. Under the assumption that the non-smooth components of the problem are partly smooth relative to smooth manifolds, we present a unified local convergence analysis framework for these Primal–Dual splitting methods....

متن کامل

A primal-dual splitting algorithm for finding zeros of sums of maximally monotone operators

We consider the primal problem of finding the zeros of the sum of a maximally monotone operator with the composition of another maximally monotone operator with a linear continuous operator and a corresponding dual problem formulated by means of the inverse operators. A primal-dual splitting algorithm which simultaneously solves the two problems in finite-dimensional spaces is presented. The sc...

متن کامل

Primal-Dual Decomposition by Operator Splitting and Applications to Image Deblurring

We present primal-dual decomposition algorithms for convex optimization problems with cost functions f(x) + g(Ax), where f and g have inexpensive proximal operators and A can be decomposed as a sum of two structured matrices. The methods are based on the Douglas–Rachford splitting algorithm applied to various splittings of the primal-dual optimality conditions. We discuss applications to image ...

متن کامل

On the convergence rate improvement of a primal-dual splitting algorithm for solving monotone inclusion problems

We present two modified versions of the primal-dual splitting algorithm relying on forward-backward splitting proposed in [21] for solving monotone inclusion problems. Under strong monotonicity assumptions for some of the operators involved we obtain for the sequences of iterates that approach the solution orders of convergence of O( 1 n) and O(ωn), for ω ∈ (0, 1), respectively. The investigate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015